
Implementation

Group Name: Team siKz
Group Number: 6

Ryan Bulman
Frederick Clarke
Jack Ellis
Yuhao Hu
Thomas Nicholson
James Pursglove



3b)

Significant new additions
Assessment 2 required us to implement multiple different features into the existing system.
These were: Weather and obstacles (FR.GEN_OBS, FR.OBS_IMPACT), temporary
upgrades through power-ups (FR.TMP_UPGRD), permanent upgrades through a shop
(FR.UPGRADES), the ability to change the difficulty of the game (FR.CHANGE_DIFF),
combat with AI ships (FR.SHIP_AI), and the ability save and load the gamestate (FR.SAVE,
FR.LOAD).

Of these features, obstacles, shops, and power-ups could be extended from the existing
GameObject object, so they did not require many significant additions.

- Obstacles are the simplest new addition, just being a game object which checks for
player collisions and applies an effect when this is true, such as damage, a
knockback or gold.

- Shops are assigned 1:1 to a college, and are initialised with the activated variable set
to false. This means they are not visible or interactable until the college the shop was
linked to is defeated. After this the player’s position can be checked and awaits user
input to open a shop window.

- Upgrades required creating new public variables in the Player object. These are
accessible from both the shop and power-ups. These are: speed, damage, and
armour.

- Power-ups were implemented as an extension from obstacles, simply providing a
temporary benefit and being removed from the screen on collision.

The other feature additions could rely less on a single object to extend from and required
more of their own code
Weather

- The weather sections on the map are where the player has temporarily reduced
speed and some have reduced visibility.

- This was done by having a weather array and passing weather objects which were
with an enum of weather type.

- There are 4 weather types: rain, snow, storm and mortar. Mortar depletes the players
health by an amount every few seconds, storms reduce the visibility of the player and
they all reduce the speed of the player.

- The weather class has a few static methods such as testing for which weather event
the player is currently in and a disadvantage method which applies the negative
effects to the player.

- Animation is added to the weather by using TimeUtils and setting a timer, which is a
lot more efficient than using threads. This animation moves static textures around the
screen to provide the desired effect.

Difficulty
- The UI was changed in the TitleScreen file to remove the play button and add three

new buttons for ‘easy’, ‘medium’ and ‘hard’.
- The amount of damage the player takes differs depending on the difficulty selected.

The takeDamage function in the Player file was edited to implement this.
- A new variable was also added to the YorkPirates file which refers to a string

representing the difficulty selected.
Ship AI

- The AI for the ships comprises two sections - movement and firing. The firing was
simpler to implement, sharing a lot of logic with the firing for colleges; when the
player is in range, fire a projectile at the player’s location.

- Movement is based on simply following the player’s location up to a “stop_range” in a
radius around the player. Two checks were also added to ensure that the boats
wouldn’t pass through the ground or other boats.



- Boats are controlled through the college they are associated with in that college’s
update function. The list of boats for each college are iterated through, calculating
their movement, checking the collision and undoing the movement if necessary,
updating the hitbox of the boat and firing if in range of the player.

Save and Load
- When the “K” key is pressed the game will make a save of the game and when the

“L” key is pressed this save is loaded. To discourage players from abusing saves not
everything is loaded from a save. For example when you load it resets the health of
enemies and removes any active power ups. That said, the save will store and load
important information such as if a college has been captured and the positions of
enemies and the player.

- We used libgdx’s inbuilt xml library because we knew from experience with
assessment one that it would be more convenient when we compiled the game.

- When a save function is called the game passes the player, colleges and obstacle
arrays into the save function. It then iterates through the arrays and saves relevant
information about that object into the save.xml file.

- When a load function is called the xml file is interpreted and information about the
objects is passed through to the game screen. The game screen then generates new
objects to replace the existing ones and replaces the content of the object arrays.

Significant changes

Change ID Description Justification

IMP01 Shot delay is calculated using timer.utils
instead of threads (CR.LOW_SPEC)

This is a more efficient method of adding a delay
between shots. The previous implementation used
threads which held until the delay was complete.
This meant that when the fire rate was high, other
sections of code were not being addressed at the
rate they should have been, leading to slowdown,
especially with regards to movement.

IMP02 Functions for obstacles and weather in
player (FR.OBS_IMPACT)

We added new functionality to the player based on
the current weather event. The player would have
reduced speed and possibly reduced visibility
depending on the current weather event.

IMP03 Created new variables in the player class
and made existing ones public
(FR.UPGRADES)

This change was necessary to access variables in
the player to enable the upgrade system we
implemented.

IMP04 Replaced Texture array in GameObject
with single Texture (CR.LOW_SPEC)

We replaced the texture array that the previous
group used, with a single texture for each game
object. The issue with using texture arrays is that if
you want to draw an object with only one texture
(that doesn’t animate) you’d have to make a texture
array with only one texture, wasting a lot of space.
Using this method is more efficient and is also a lot
easier to implement because we only have to pass
one Texture rather than an array of them.

IMP05 The arrow keys have been reassigned
from movement controls to shooting

Given that one very likely use case of the program
is a laptop on open day, only having the ability to



(CR.LOW_SPEC) shoot with a mouse made the game nearly
unplayable. This is due to how Libgdx interacts with
the trackpad and button checks. While mouse aim
was acceptable with a free-standing mouse, there
needed to be an alternative that worked on a laptop

IMP06 Added three difficulty options to the game
(FR.CHANGE_DIFF)

Depending on which difficulty level the player
selects, it will change the damage dealt to the
player. This is done by using a multiplier, which
multiplies the damage dealt by some constant that
is set based on the difficulty level.

IMP07 Functionality in college to run ships AI
(FR.SHIP_AI)

Within the college object a number of functions are
called. These have the effect of controlling the
basic AI for each ship - enabling them to move and
fire independently


