
Architecture

Assessment 1:
Team 14: Bass2

Katie Maison
Saud Kidwai

Jacob Poulton
Cody Spinks

Felix Rizzo French
Joachim Jones

Assessment 2:
Team 6: Team siKz

Ryan Bulman
Frederick Clarke

Jack Ellis
Yuhao Hu

Tom Nicholson
James Pursglove



[2] https://engteam14.github.io/media/State_Diagram_4.png, [1] https://engteam14.github.io/media/Abstract%20Architecture.png

https://engteam14.github.io/media/State_Diagram_4.png
https://engteam14.github.io/media/Abstract%20Architecture.png


[3] https://github.com/TomNicho/yorkpirates/blob/master/abstract.png

https://www.plantuml.com/plantuml/img/hLPTS-8s57tthz1aNsZ1J3FJ9vxg63TXcWqi9itk4oFi6r0ZMwui9w4x-zzx9N-oOK0Xy6IkvEDpp_ty8rTKgYBXZXDnckSa4iaGqhK2cbp-FjmA-PGnIHNamskQG1X9W9HyT_haExwfMFI3P9nkGIxmXH49bMJfkdiAAIJRdKF79S1fbaEyO0cCo2CNLA6HvJDQe7L4La9me2dQ7WNducLclj3Q4N-DPCprtY_Llo2DUzM5sZI771HU-77SkM_uF2kVqJktvH_wyo2uMowcozdaQt2xd7kBoNH4MAeSOlr3FYWSWXksCSipKJ7_js2M3BNyqzK_42aZ_sijN9zisySN5gjD-tS3RBrHzNyq9FJr1YZNTxG7IAkG4b9L6ykBduZQ2LYVAFe4OvhGDVHoam8ZqgR3m8dDKVNwW6HIQ9wCGpVmsjr4F4FljRbOCpUgIFhIMr4L8Oqmaqp1bVups9CiLdg5aP3mcQP8J9gGvjfG--t5SOyceaYLiMW2rpfNwdFyKxBMfae7Yu_Ut8_DjrIXX6IK-oB9E2ZevdH4KynLBLyderqodeGBxyuFbjTJxxQauPBPT7AtsB4qr-R1WpSVxrxysVOGp9Vtit14F2dfLWSIWns33DN-I5e9wsDDmXfscq14CrL8YFr6KkrJZhqXt-oMUIokk11nQ8vsT2bnxummRUeLMQmBPn_PFg5nV8MmUr9gGAJGt4JwdgHPCCNR9kUQBXBg3cbNesKPNT4guVIB3zsAD078sN_Gg-hkRygBTsKrPav3p-9wsJbtEzfDuDqkRkeaQSnb1lqv3xxS1tV-jpVduIm8ncqO6xllVGxctZAyzVo_6ZzTtUGKJQFZWJyKue4JuREa8pALQYFMacOR5ld6PYMN6H4_nTCNgM9f0NOXdQGnYoXMitd_cULinJk5QyEXwOO60blm-8qsRSSCCz0ZyEt1kDjZZnI61Qlf2Zb49ISkegfIgEaJhaxHPef46uYUTD6ZxoBjbIbbfrq4Av1h_48z84np5McBPeM31IM18ynQyFXKa0USlnkGY9AN4fy64-XzPfzccyvStVNtK0VhJBty74Dl8pBionGpvXaDSRVCYWph9uPUkQyD21OZTkhkc1oGwau879DElrwFRfiy5oyWxxDzsi3Z8-ADS1ai4gUViUYfo1eUNLSxdbgjQXUNm-7b1N7T-icgjHz2xqw06lquU1jJnsg1jaVkTB1pGpUpnB5heET5RYVP-OEuHmu4_squ_FN2QiD-D_Jb4UXkbPq2Vb0KN3eFYL7j0Ey1hDSOv_WMU1Ai3MuPBHlSTi1Qg531dWcrtGxiYwFoq3dSnKy0j4iir_qGDrkaKkz3d9eDv22ELL5MYyPXfFfxph55uyCmPaSuWrlLHFqm7vDFbdJ-1m00
https://github.com/TomNicho/yorkpirates/blob/master/abstract.png


https://www.plantuml.com/plantuml/img/hLTBR-Cs4BxhLn3eHOKj0mLwCefY5LbDZ7fjrtAQtPD1YsEP3IMg59NO-_Zl7UhjneYLZM_Ya1n-y_n67p9DbSvZOLcXe5b6GXcF88aqqFYNNqT7gHvJhgY6R7HBOmX21P2GhzQ0VCMRceVVIIhe4TGQBun9e1LFekuk910VJpOjXu2WQGPipMCOavsGLAEGPqkQetHCjb8Ae0dATb88-RmiNcZbg3z2CCLn--TgvIVChWxKeXLaeF70zyl6VSRlPVcDrZaj_i1R-VvyirvibjDF_copSjVJnPZmH1iOw0wyKc1WF4jbXUVVdFTyrpXriVq7GbquzL2xOq2ExUSpPthVBlV0exskroY8wU4Eg31d32w4bIi5YQw5vS6VY3u9mu1e-WWJ6jC8xAm8x9YqGHvQhDYghWz9ggJ1oGLqmsdCZUKJs8VcO8syy8gYp_QMwX1X1AdY6cxCOdWc1NhvAmYbWeyqGM2g25Hc1BNTBcCsZMMUw49Y0DoQ3AZtSL6YDgBA3pqUlRkV56_fN4l5gV1ad0hGqCtKa2QOWSPzdJnro6GQhDsvvszk5-wiXE6GvM8wNvz8ccCh_y5TJKuFTcLe14QMWGhq-R3rygA7PGKHdDPnI5ETAs1UupzZG8RbdUrFAvN96o4b2ugj4oUKUkU55zeyorDcgkGSs06XZDsWsZFvCoHA6cmoUKk6hBaMRPzoYaOGc2RNho3BchcXLNQPYm_TyYi2aF4lO5T5zZSL-PjI6DEaWTVZUDdyJflIdU_ErdTrbZJYCbt-MFb_tVjpx_EB_M3f-vCsZ8tSSp_wAtSJp5plpyPEntGqJPFmSk1V2_7G2l5RqJ5PABsNaQBfdeTU8UlbhgBB_o-UdamqJtBe5z9FiPX9oYedxh21fTG4DAl92grZXrWKhJl34eToWQfzV4SVNz6DBuCsb97H9nZXlJw05bjqR2XC_Jb2XbMAKwNeqN9CRZMzFjn3-6YgbMTunYvpePVHqn2se29yeMxZHGkKIQkjbnwi10K2rKHIi1zLye0ikGU5Mh8Ku8VL-6QMEEUpVOVzJkrzhVLqk2cx1ZNjPMeQAaMEV499Pv1169Zu3EnwaYbdfY7fqjaOyr1YqolxvfXKTm8GoBh0-XMBV0Prdvxp4Unsg6UC0raUMuEKXuzvQjSukYQt5bzEieHnV4QMbVM4eToA3l_r0TmC5OKAd6GcBxfEEtW4PVQyt9XqHvKBb6DG8PujPK96F1n5x30gzro658XjuhTlZjDh47wfoEnTkj-PDQrUa-45VHMRlzEg3czU1LL3fE_4rT3bLL2L1VXEI1rAkWgefeokOs9J5PRLWuCSvzlllNvGhDV99bVH9LtrczP5fhY2ffAuhg2eO9shkAdgpbV0PBZc3P2i3_ZFW3_v_m40


[4] https://github.com/TomNicho/yorkpirates/blob/master/inheritance.png

We used the classes part of PlantUML to create class diagrams for the concrete and abstract structure of the project to show inheritance, in addition to state
diagrams for the sequence of events that would occur throughout the course of our application’s use using ‘state’ in PlantUML .We used intellij for syntax highlighting
and for rendering the images. We simplified and removed getters, setters and some utility and instance attributes.

https://www.plantuml.com/plantuml/img/hLTBR-Cs4BxhLn3eHOKj0mLwCefY5LbDZ7fjrtAQtPD1YsEP3IMg59NO-_Zl7UhjneYLZM_Ya1n-y_n67p9DbSvZOLcXe5b6GXcF88aqqFYNNqT7gHvJhgY6R7HBOmX21P2GhzQ0VCMRceVVIIhe4TGQBun9e1LFekuk910VJpOjXu2WQGPipMCOavsGLAEGPqkQetHCjb8Ae0dATb88-RmiNcZbg3z2CCLn--TgvIVChWxKeXLaeF70zyl6VSRlPVcDrZaj_i1R-VvyirvibjDF_copSjVJnPZmH1iOw0wyKc1WF4jbXUVVdFTyrpXriVq7GbquzL2xOq2ExUSpPthVBlV0exskroY8wU4Eg31d32w4bIi5YQw5vS6VY3u9mu1e-WWJ6jC8xAm8x9YqGHvQhDYghWz9ggJ1oGLqmsdCZUKJs8VcO8syy8gYp_QMwX1X1AdY6cxCOdWc1NhvAmYbWeyqGM2g25Hc1BNTBcCsZMMUw49Y0DoQ3AZtSL6YDgBA3pqUlRkV56_fN4l5gV1ad0hGqCtKa2QOWSPzdJnro6GQhDsvvszk5-wiXE6GvM8wNvz8ccCh_y5TJKuFTcLe14QMWGhq-R3rygA7PGKHdDPnI5ETAs1UupzZG8RbdUrFAvN96o4b2ugj4oUKUkU55zeyorDcgkGSs06XZDsWsZFvCoHA6cmoUKk6hBaMRPzoYaOGc2RNho3BchcXLNQPYm_TyYi2aF4lO5T5zZSL-PjI6DEaWTVZUDdyJflIdU_ErdTrbZJYCbt-MFb_tVjpx_EB_M3f-vCsZ8tSSp_wAtSJp5plpyPEntGqJPFmSk1V2_7G2l5RqJ5PABsNaQBfdeTU8UlbhgBB_o-UdamqJtBe5z9FiPX9oYedxh21fTG4DAl92grZXrWKhJl34eToWQfzV4SVNz6DBuCsb97H9nZXlJw05bjqR2XC_Jb2XbMAKwNeqN9CRZMzFjn3-6YgbMTunYvpePVHqn2se29yeMxZHGkKIQkjbnwi10K2rKHIi1zLye0ikGU5Mh8Ku8VL-6QMEEUpVOVzJkrzhVLqk2cx1ZNjPMeQAaMEV499Pv1169Zu3EnwaYbdfY7fqjaOyr1YqolxvfXKTm8GoBh0-XMBV0Prdvxp4Unsg6UC0raUMuEKXuzvQjSukYQt5bzEieHnV4QMbVM4eToA3l_r0TmC5OKAd6GcBxfEEtW4PVQyt9XqHvKBb6DG8PujPK96F1n5x30gzro658XjuhTlZjDh47wfoEnTkj-PDQrUa-45VHMRlzEg3czU1LL3fE_4rT3bLL2L1VXEI1rAkWgefeokOs9J5PRLWuCSvzlllNvGh8jaSqbN_QPraIckeAaahYieAbZdAcwgklCLC1ckUGCawmF-C-1F_dy0
https://github.com/TomNicho/yorkpirates/blob/master/inheritance.png


3.(b) Justification of Abstract Architecture
For our abstract architecture, we have focused on how we could structure it so that adding more entities
and screens would be simple in future, and how we could reduce the code that would be duplicated in our
code base. To do this, we made two main classes, GameEntity and Screens which both have the method
update() which is to perform calculations before each entity/screen is rendered.

- YorkPirates - The main class of the game
- GameEntity

- The class that every object within the game scene is an instance of. Implements health, rendering,
teams, and shooting projectiles. As these are features all objects use, having a base class implement
them is important.

- Boat and player
- Boat inherits all attributes and methods of GameEntity and Player inherits both. Boat additionally has

a boolean attribute of ‘movable’ which decides whether the boat can move or not. This is because for
this stage, the enemy boats can’t move but the friendly one can. However in future some Enemy boats
may become movable but some could stay docked.

- Colleges
- Inherits all attributes and methods of GameEntity but also has a method called shootFrequency to

set how often it shoots on its own and a switchTeams method for switching the images and turning off
shooting/being shot by, the player, when the player captures it.

- PauseScreen, TitleScreen and EndScreen
- Each has a different set of buttons needed for its screen and are child classes of screens to use its

render method and all are child classes of screen to use the same background and update() method for
calculations before rendering.

- Game Screen
- When the game is restarted, a new instance of this is created so that the game doesn't have to be fully

restarted and also has the methods for restarting, pausing and ending the game but is also a child of
the screen.

Concrete Architecture
We started our implementation by creating the classes seen in the abstract architecture. While doing this, we came
to find other more efficient, in-built features of LibGDX, such as ScreenAdapter or TiledMap, which provided
better solutions than the ones in the abstract architecture. Additionally to this, as we developed more of the game
we found ourselves needing new classes as well as to change old ones. The bullet points following discuss this.

● We have focused on the same features as abstract however have added some aspects for the ease of
adding extra functionality in future. One of the outcomes of this is the addition of TiledMaps to the game.
This allows us to rapidly draft prototype and final levels for the game using the software Tiled, which greatly
improves development times, furthermore the TiledMap allows for the implementation of a co-ordinate
based collision system which is largely more efficient than the previous Rectangle based one we used.

● YorkPirates
○ Due to the structure of LibGDX, we had to make a main Game class. This matches what we planned in

our abstract architecture to an extent but screens are actually child classes of ScreenAdapter and
YorkPirates instantiates TitleScreen and then switches between the others.

● TitleScreen, EndScreen, PauseScreen
○ These classes are extensions of the ScreenAdapter class and render their screens with Buttons and

overlays on the paused instance of GameScreen. (note: the attributes for these classes are omitted for
clarity). These inheriting ScreenAdapter is different to the abstract architecture as we were not fully
familiar with the structure of libGDX. These classes fulfil the requirements: UR/FR.START_SCRN and
due to TitleScreen, UR.SCRN_NAME / FR.START.NAME due to the ability to add a name on titleScreen,
UR.RESTART_GAME due to the pause menu, FR.START.START and FR.START.EXIT due to the



TitleScreen, FR.KILL_SCRN due to the EndScreen class and FR.GAME_SOUND due to the mute button
on the PauseScreen.

● GameScreen
○ This class is the main gameplay environment, containing and rendering all instances of the objects within

the game, which meets requirement UR.SEE_POS. Furthermore it has the methods for pausing the
game with gamePause(), ending the game with gameEnd() and restarting the game with gameReset().
We put those methods in this class because every other class that needs these has access to an
instance of this class.

● HUD
○ We did not have this class in the abstract architecture but we added it for readability to avoid clutter in

the main GameScreen class.
● GameObject

○ Every object in the game is an instance of GameObject where ones with seperate functionality are a
child class of GameObject. This is so that common attributes and methods such as currentHealth,
takeDamage and position within the world (x, y) are shared among all objects.

● ScoreManager
○ ScoreManager was created to lay the groundwork for future possible implementations of a more

complex loot and points system. It also encapsulates the values, which in the case of points makes it
easier to update the points value from the Player when they move() or the loot value from the College
when it is defeated, meeting UR.COLLECT_POINTS and UR.COLLECT_LOOT.

● College
○ College is a child class of GameObject with the further features that it has Projectiles and a HealthBar

and Indicator. This is in a separate class as it shoots automatically rather than through user input like
Player.

● Player
○ In the abstract architecture, Player was a child of Boat because Boat allowed movement. However we

decided to put the movement method into GameObject because Projectile, HealthBar and Indicator,
also needed to be able to move and so therefore we could use the move() method for all of these, as
well as in future, moveable enemy boats. This ensures we still meet the requirement UR.UPDATE_POS.

● HealthBar
○ HealthBar was not in our abstract, however we realised the HealthBar was needed for both the Player

and the College and so to save us from code repetition we made HealthBar into its own class. This will
also make implementing enemy boats in the future easier.

● Projectile
○ In our abstract architecture, shooting was implemented as part of GameObject, however as we now

have more objects in the game and not all of them shoot. Having all objects do this would be inefficient
so we moved it into its own class, which Player and College both use, allowing UR.ATK_CLG to be met.

● Indicator
○ In our abstract implementation we did not have a method which allows the user to see where they are

relative to the colleges (UR.CLG_POS). This is why we added Indicators, these draw arrows showing
the player which direction each college is, fulfilling the requirement UR.CLG_POS.

● Barrel, Iceburg, PowerUp, Obstacle
○ We created an abstract obstacle class that the new obstacles could inherit from. We did this because we

had a lot of new features to implement that would need to have collision with the player, such as barrels,
icebergs and power ups (UR.POWER_UP, UR.AVOID.OBS). We then created classes that inherit from
Obstacle with their own behaviour.

● XMLload, save.xml
○ In the existing implementation there was no file to save or load object data from. We created

save.xml as a file to save data to and XMLload as a class containing functions that would save and
load that data. (UR.SAVE_LOAD)

● ShopUI, Shop
○ We had been given a new requirement to implement a shop. To do this we created a single class

Shop. This was related 1:1 to a college and had a boolean activated that was toggled on when the
related college was captured. This class handled the upgrades, while the UI was managed in HUD
and user input was taken from GameScreen.(UR.SPEND_LOOT).



Bibliography
[1] “York Pirates! Abstract Architecture Class Diagram” York Pirates!
https://engteam14.github.io/media/Abstract%20Architecture.png.
[2] “York Pirates! State Diagram” York Pirates! https://engteam14.github.io/media/State_Diagram_4.png.
[3] “York Pirates! Concrete Architecture Class Diagram” York Pirates!
https://github.com/TomNicho/yorkpirates/blob/master/abstract.png
[4] “York Pirates! Concrete Architecture Class Diagram (Inheritance)” York Pirates!
https://engteam14.github.io/media/inheritence.png.


